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Abstract. We investigate minimal energy solutions with vortices for an interacting Bose-Einstein conden-
sate in a rotating trap. The atoms are strongly confined along the axis of rotation z, leading to an effective
2D situation in the x−y plane. We first use a simple numerical algorithm converging to local minima of
energy. Inspired by the numerical results we present a variational ansatz in the regime where the interac-
tion energy per particle is stronger than the quantum of vibration in the harmonic trap in the x−y plane,
the so-called Thomas-Fermi regime. This ansatz allows an easy calculation of the energy of the vortices
as function of the rotation frequency of the trap; it gives a physical understanding of the stabilisation of
vortices by rotation of the trap and of the spatial arrangement of vortex cores. We also present analytical
results concerning the possibility of detecting vortices by a time-of-flight measurement or by interference
effects. In the final section we give numerical results for a 3D configuration.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 67.40.Vs Vortices
and turbulence – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

After the achievement of Bose-Einstein condensates in
trapped atomic gases [1] many properties of these sys-
tems have been studied experimentally and theoretically
[2]. However a striking feature of superfluid helium, quan-
tized vortices [3,4], has not yet been observed in trapped
atomic gases. There is an abundant literature on vortices
in helium II, an overview is given in [4].

The atomic gases have interesting properties which jus-
tify efforts to generate vortices in these systems: the core
size of the vortices is adjustable, as in contrast to helium
the strength of the interaction can be adjusted through
the density; the number of vortices in atomic gases can be
in principle well-controlled; for a small number of particles
in the gas metastability of the vortices can be studied, that
is one can watch spontaneous transitions between config-
urations with different number of vortices.

Several ways to create vortices in atomic gases have
been suggested. A method inspired from liquid helium
consists in rotating the trap confining the atoms [5]; at
a large enough rotation frequency it becomes energeti-
cally favorable at low temperatures to produce vortices;
two different paths could be in principle followed: (1) pro-
ducing first a condensate then rotating the trap, or (2)
cooling the gas directly in a rotating trap. It has been re-
cently proposed in [6] to use quantum topological effects to
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obtain a vortex. Other methods that do not rely on ther-
mal equilibrium have been suggested [7,8].

Here we study theoretically the minimal energy con-
figurations of vortices in a rotating trap [9]. The model
is defined in Section 2; in Sections 3 to 6 we assume a
strong confinement of the atoms along the rotation axis
z so that we face an effective 2D problem in the trans-
verse plane x−y. We present numerical results for solu-
tions with vortices that are local minima of the Gross-
Pitaevskii energy functional (Sect. 3). These solutions
contain only vortices with a charge ±1, the vortices with
a charge larger than or equal to 2 are thermodynamically
unstable (Sect. 4). We discuss possibilities to get experi-
mental evidence of vortices in atomic gases in Section 5.
Finally, we concentrate on the regime where the interac-
tion energy is much larger than the trap frequencies ωx,y,
the so-called Thomas-Fermi limit [2]. This is complemen-
tary to the work of [10]. We obtain in this “strong interact-
ing” regime analytical predictions based on a variational
ansatz that reproduce satisfactorily the numerical results
(Sect. 6). In Section 7 we present results for vortices in
3D, that is in a trap with a weak confinement along the
rotation axis.

2 Model considered in this paper

The atoms are trapped in a potential rotating at an-
gular velocity Ω. In the laboratory frame the Hamilto-
nian of the gas is therefore time dependent. To eliminate
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this time dependence we introduce a rotating frame at the
angular velocity Ω so that the trapping potential becomes
time independent; this change of frame is achieved by the
single-atom unitary transform:

U(t) = eiΩ·Lt/~ (1)

where L is the angular momentum operator of a single
atom. As the unitary transform is time dependent the
Hamiltonian in the rotating frame contains an extra in-
ertial term, given for each atom by

i~U†(t) d
dt
U(t) = −Ω · L. (2)

The atoms are interacting via the effective low energy po-
tential commonly considered in the literature, V (r1−r2) =
g3Dδ(r1 − r2), where the coupling constant is related to
the s-wave scattering length a (taken here to be positive)
and to the atomic mass m by g3D = 4π~2a/m. In this
paper we consider the case of a dilute gas (with a den-
sity much smaller than a−3) at zero temperature. We can
then assume that the N particles of the gas are condensed
in the same state φ. The wavefunction φ(r) is time inde-
pendent as we are in the rotating frame and minimizes
the energy per particle in the condensate, given by the
Ginzburg-Landau energy functional:

E[φ, φ∗] =
∫

d3r
φ∗(r ) [H0 −Ω · L]φ(r )

〈φ|φ〉 +
1
2
Ng3D|φ|4
〈φ|φ〉2 ·

(3)

In this energy functional H0 contains the kinetic energy
and the trapping potential energy of the particles:

H0 = − ~
2

2m
∆+ U(r, t = 0). (4)

The energy functional includes also the inertial term
−Ω · L and a term proportional to |φ|4 describing the
interaction energy between the particles in the mean field
approximation.

As done in the present experiments with atomic gases
we take the case of a harmonic trap, with eigenfrequen-
cies ωα:

U(r, t = 0) =
∑

α=x,y,z

1
2
mω2

αr
2
α. (5)

Furthermore in all but in Section 7 we will assume that
the trapping potential is much stronger along the z axis
than along the x, y axis, with an oscillation frequency
much larger than the typical interaction energy Ng3D|φ|2
per particle. This situation, although not realized experi-
mentally yet, is not out of reach, in particular when one
uses optical traps rather than magnetic traps [11]. In this
strong confining regime the motion of the particles along
z is frozen in the ground state of the strong harmonic
potential:

φ(x, y, z) ' ψ(x, y)
(mωz
π~

)1/4

e−mωzz
2/2~ (6)

and only the dependence of the wavefunction ψ in the x−y
plane remains to be determined. Inserting equation (6) in
the energy functional equation (3) we get the correspond-
ing energy functional for ψ to be minimized, dropping the
constant term (1/2)~ωz:

E[ψ,ψ∗] =
∫

d2r
ψ∗(r ) [H⊥ −ΩLz]ψ(r )

〈ψ|ψ〉 +
1
2
Ng|ψ|4
〈ψ|ψ〉2 ·

(7)

This 2D energy functional gives the energy per particle in
the condensate measured from the zero-point energy along
z. The 2D Hamiltonian is

H⊥ = − ~
2

2m
∆x,y +

1
2

∑
α=x,y

mω2
αr

2
α. (8)

The trap is now rotated around the z axis at the angular
velocity Ω. The interaction term |ψ|4 involves an effective
2D coupling constant between the atoms [12]

g = g3D

(mωz
2π~

)1/2

· (9)

Most of the results of the paper are dealing with the 2D en-
ergy functional; a numerical result for a local minimum of
the full 3D energy functional will be given in the Section 7.
We concentrate on the so-called Thomas-Fermi regime,
where the interaction energy per particle is much larger
than ~ωx,y. The opposite regime has already been studied
in [10].

3 Local minima of energy with vortices

In this section we briefly discuss the general problem of
minimizing energy functionals of the type equation (7).
We present the numerical algorithm that we have used
and we give numerical results for the 2D problem.

3.1 A numerical algorithm to find local minima

The algorithm in our numerical calculations is commonly
used in the literature to minimize energy functionals
E[ψ,ψ∗] of the form equation (7). The intuitive idea is
to start from a random ψ and move it opposite to the
local gradient of E[ψ,ψ∗] that is along the local downhill
slope of the energy. Numerically this is implemented by
an evolution of ψ parametrized by a fictitious time τ :

− d
dτ
ψ =

δE

δψ∗
[ψ,ψ∗]. (10)

Assuming a ψ normalized to unity we get the following
equation of motion for ψ:

− d
dτ
ψ = [H⊥ −ΩLz +Ng|ψ|2 − µ(τ)]ψ (11)

that is a non-linear Schrödinger equation in complex time
t = −iτ . The quantity µ appearing in this equation can
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Fig. 1. Isocontours of the density |ψ|2 for a 1-vortex (a) and a 4-vortex (b) configuration obtained numerically in a non-
axisymmetric trap (ε = 0.3) with a rotation frequency Ω = 0.2ω, and µ ' 40~ω (see text for the definition of ε, ω); the unit of
length for x and y is (~/mω)1/2.

be expressed explicitly in terms of a functional of ψ,ψ∗;
it ensures that the norm of ψ does not evolve with τ .

This equation is, for Ω = 0, standardly solved by a
splitting technique, propagating during the time step dτ
first with potential energy in position space (where it is
diagonal) then with kinetic energy in momentum space
(where the Laplacian is diagonal). One goes back and forth
between position and momentum space with Fast Fourier
Transforms along x and y. In our case Ω 6= 0 and the
Hamiltonian contains Lz = xpy − ypx; we have therefore
complemented the splitting scheme by (1) a propagation
during dτ due to −~Ωxpy in position space along x and
momentum space along py, and (2) a similar procedure for
the ~Ωypx propagation, that is in momentum space along
x and position space along y.

One can check that the mean energy of ψ is a decreas-
ing function of τ :

d
dτ
E[ψ,ψ∗] = −2

∫
d2r

∣∣∣∣ δEδψ∗
∣∣∣∣2 ≤ 0. (12)

In the case we consider E remains always positive: the
scattering length and therefore g are positive so that
the interaction term is positive, and |Ω| is smaller than
the trap frequencies ωx,y so that the centrifugal potential
−mΩ2r2/2 cannot exceed the trapping potential. There-
fore E has to converge to a finite value for τ →∞. Asymp-
totically dE/dτ = 0 and ψ satisfies δE/δψ∗[ψ,ψ∗] = 0, so
that we recover for τ = ∞ the time independent Gross-

Pitaevskii equation:

µψ = H⊥ψ +Ng|ψ|2ψ −ΩLzψ (13)

where µ = µ(τ =∞) is now the chemical potential of the
gas [2].

As we have started from a random wavefunction ψ,
without assuming any symmetry properties of ψ, we ex-
pect the trajectory ψ(τ) to converge as τ →∞ to a local
minimum of the energy functional. We have checked this
assumption by adding a small random wavefunction to ψ
and resuming the evolution in τ ; ψ was relaxing to its ini-
tial value. Mathematically the steady state solutions for
the τ evolution that we find are stable, which is equiva-
lent to saying that they are local minima of the energy.
Note that not all solutions of the Gross-Pitaevskii equa-
tion share this property: the Gross-Pitaevskii equation ex-
presses only the fact that the energy functional is station-
ary in ψ, which is the case e.g. at saddle points of the
energy functional (an example is a vortex with a charge
|q| > 1, see Sect. 4).

3.2 Numerical results in 2D

Applying the algorithm detailed in the previous section we
present results on local minima of the energy functional
equation (7) for asymmetric and symmetric traps in the
x−y plane. We characterize the non-axisymmetry of the
trap by ε such that

ωx = ω/(1 + ε) (14)
ωy = ω(1 + ε). (15)
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Fig. 2. Numerical results for the energy of 0-vortex, 1-vortex
and 4-vortex configurations (from top to bottom), as function
of the frequency ratio ωx/ωy, for a fixed product of the frequen-
cies ω2 = ωxωy. The rotation frequency of the trap is Ω = 0.2ω
and the energies are measured in units of ~ω from the 0-vortex
energy Eiso in the axi-symmetric trap; the chemical potential
is µ ' 40~ω. The circles correspond to numerical results; the
solid line is an analytical prediction for the 0-vortex case as
obtained in Section 6.2.

In Figure 1 we show different local minima configurations
obtained for ε = 0.3 and a rotation frequency Ω = 0.2ω;
each configuration has been obtained for different random
initial ψ’s. The holes observed in the spatial density corre-
spond to the vortex cores. We have always found that the
phase of ψ changes by 2π around a vortex core; we have
not found vortices with a charge ±q, where the integer q
is strictly larger than one; this fact will be explained in
the next section. Furthermore the sense of circulation is
the same for all vortices.

To quantify the effect of the non-axisymmetry of the
trap we have plotted in Figure 2 the dependence of en-
ergy of different vortex configurations on ωx/ωy for a fixed
ω; we measure the energies from Eiso, the energy of the
zero-vortex solution in the axisymmetric case ε = 0. The
zero-vortex solution exhibits a significant variation of en-
ergy with ε; for a non-zero ε the wavefunction ψ develops
a phase proportional to Ω for weak Ω’s, which accounts
for the energy change as explained in Section 6.2. The
solutions with vortices experience quasi the same energy
shift as function of ε. As only the energy difference be-
tween the various local minima matters we will from now
on only consider the axisymmetric case ε = 0 to identify
the solution with the absolute minimal energy.

Note that the solutions ψ with several vortices ob-
tained in the limiting case ε = 0 are not eigenvectors of
Lz; this reflects a general property of non-linear equations
such as the Gross-Pitaevskii equations to have symmetry
broken solutions; it is explained in [10] how to reconcile
this symmetry breaking with the fact that eigenvectors of
the full N -atom Hamiltonian are of well-defined angular
momentum.

4 Stability properties of vortices

In this section we recall that a (normalized) wavefunction
ψ such that E[ψ,ψ∗] has a local minimum in ψ, describes
a condensate having all the desired properties of stability,
that is dynamical and thermodynamical stability. We then
show that a vortex centered at r = 0 with an angular
momentum strictly larger than ~ is not a local minimum
of energy and is therefore thermodynamically unstable.

4.1 Stability properties of local minima

Let us express the fact that ψ corresponds to a local min-
imum of the energy. A first condition is that the energy
functional is stationary for ψ, that is ψ solves the Gross-
Pitaevskii equation equation (13). To get the second con-
dition, we consider a small variation of ψ,

ψ → ψ + δψ (16)

preserving the normalization of the condensate wavefunc-
tion to unity:

||ψ + δψ||2 − ||ψ||2 = 0 = 〈ψ|δψ〉+ 〈δψ|ψ〉+ 〈δψ|δψ〉.
(17)

We expand the energy functional E[ψ,ψ∗] in powers of
δψ, neglecting terms of order δψ3 or higher. Using equa-
tions (17, 13) we find that terms linear in δψ vanish so
that

δE =
1
2

(〈δψ|, 〈δψ∗|)Lc

(
|δψ〉
|δψ∗〉

)
+ o(δψ2). (18)

We have introduced the operator

Lc =

(
HGP +Ng|ψ|2 Ngψ2

Ngψ∗
2 H∗GP +Ng|ψ|2

)
(19)

and the Gross-Pitaevskii Hamiltonian

HGP = H⊥ +Ng|ψ|2 −ΩLz − µ. (20)

The fact that E has a local minimum in ψ imposes that
the Hermitian operator Lc be positive. In general Lc

will be strictly positive apart from the zero energy mode
(iψ,−iψ∗) corresponding to an inessential change of the
global phase of ψ. We now show that the positivity of Lc

implies the stability of the solution ψ.

4.1.1 Dynamical stability

Consider first the problem of so-called “dynamical stabil-
ity”: to be a physically acceptable condensate wavefunc-
tion, ψ has to be a stable solution of the time dependent
Gross-Pitaevskii equation

i~∂tψ = HGPψ (21)
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otherwise any small perturbation of ψ, e.g. the effect of
quantum fluctuations or experimental noise, may lead to
an evolution of ψ far from its initial value. To determine
the evolution of a small deviation δψ as in equation (16)
we linearize equation (21):

i~∂t

(
|δψ〉
|δψ∗〉

)
= L

(
|δψ〉
|δψ∗〉

)
(22)

where the operator L is related to Lc by

Lc =

(
1 0
0 −1

)
L. (23)

As ψ is time independent, so is L and dynamical stabil-
ity is equivalent to the requirement that the eigenvalues
of L have all a negative or vanishing imaginary part. As
we now show the positivity of Lc leads to a purely real
spectrum for L. Consider an eigenvector (u, v) of L with
the eigenvalue ε. Contracting equation (23) between the
ket (|u〉, |v〉) and the bra (〈u|, 〈v|) we get

ε [〈u|u〉 − 〈v|v〉] = (〈u|, 〈v|)Lc

(
|u〉
|v〉

)
. (24)

Note that the matrix element of Lc is real positive as Lc

is a positive hermitian operator. We now face two possible
cases for the real quantity 〈u|u〉 − 〈v|v〉:
• 〈u|u〉 − 〈v|v〉 = 0. In this case Lc has a vanishing ex-

pectation value in (|u〉, |v〉); as Lc is positive (|u〉, |v〉)
has to be an eigenvector of Lc with the eigenvalue zero;

from equation (23) and the fact that

(
1 0
0 −1

)
is in-

vertible we find that (|u〉, |v〉) is also an eigenvalue of L
with the eigenvalue 0, so that ε = 0 is a real number;
• 〈u|u〉 − 〈v|v〉 > 0: we get ε as the ratio of two real

numbers, so that ε is real.

4.1.2 Thermodynamical stability

A second criterion of stability is the so-called “thermo-
dynamical” stability. For zero temperature, this condi-
tion can be formulated in the Bogoliubov approach [2],
where the particles out of the condensate, which al-
ways exist because of the interactions, are described by
a set of uncoupled harmonic oscillators with frequencies
εsign [〈u|u〉 − 〈v|v〉] /~, where (u, v) is an eigenvector of L
with the eigenvalue ε. In order for a thermal equilibrium
to exist for these oscillators, their frequencies should be
strictly positive, which is the case here in virtue of equa-
tion (24) [13]. If a mode with a negative frequency were
present thermalization by collisions would transfer par-
ticles from the condensate ψ to this mode, leading to a
possible evolution of the system far from the initial state
ψ [14].

What happens for solutions ψ of the Gross-Pitaevskii
equations that are not local minima of energy? The oper-
ator Lc has at least an eigenvector with a strictly negative

eigenvalue. In this case one cannot have thermodynamical
stability, that is one cannot have ε [〈u|u〉 − 〈v|v〉] > 0 for
all modes [13]. From the non-positivity of Lc one cannot
however distinguish between a simple thermodynamically
instability or a more dramatic dynamical instability.

4.2 Why not a vortex of angular momentum larger
than ~?

For simplicity we consider only a single vortex in the cen-
ter of an axi-symmetric trap. We show that vortices with
a change of phase of 2qπ are not local minima of energy,
that is are (at least thermodynamically) unstable. We have
found numerically a solution of the Gross-Pitaevskii equa-
tion equation (13) by an evolution in complex time, start-
ing from a wavefunction ψ with an angular momentum
q~ along z, as already done in [15]; our solution of the
Gross-Pitaevskii equation with imposed symmetry is a lo-
cal minimum of energy in the subspace of functions with
angular momentum q~ along z, but not necessarily a lo-
cal minimum in the whole functional space, as we will see
for |q| > 1. In the Thomas-Fermi regime µ � ~ω we find
that the solutions can be well-reproduced by a variational
ansatz of the form

ψ(x, y) = eiqθ [tanhκqr]
|q|
(
µ̃−mω2r2/2

Ng

)1/2

(25)

where θ is the polar angle in the x−y plane and where µ̃,
the chemical potential in the lab frame

µ̃ = µ+ q~Ω (26)

does not depend on Ω. In this ansatz the vortex core is
accounted for by tanh|q|, a function that vanishes as r|q|
in zero as it should, and the condensate density outside
the core coincides with the Thomas-Fermi approximation
commonly used for the zero-vortex solution [2]. We cal-
culate the mean energy equation (7) of the variational
ansatz and we minimize it with respect to the variational
parameter κq; we get

κq =
[
µ̃m

~2

]1/2

cq (27)

where

c2q =
2
q2

∫ +∞

0

du u
(

tanh2|q|(u)− 1
)2

(28)

is a number (c1 = 0.7687, c2 = 0.5349, . . . ).
In order for the vortex of charge q to be a local min-

imum of energy, the operator Lc of equation (19) has
to be positive. This implies that the operator on the
first line, first column of Lc, the so-called Hartree-Fock
Hamiltonian, be positive:

HHF = H⊥ + 2Ng|ψ|2 − µ̃+ q~Ω −ΩLz ≥ 0. (29)
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To show that this is not the case it is sufficient to find
a wavefunction f(x, y) leading to a negative expectation
value for HHF. As the potential appearing in HHF has a
dip at r = 0 we have taken f of a form localized around
r = 0:

f(x, y) =
1

cosh

[
γ

(
µ̃m

~2

)1/2

r

] (30)

where γ is adjusted to minimize the expectation value. For
e.g. q = 2 we take γ = 1 leading to

〈f |HHF|f〉
〈f |f〉 ' −0.407µ̃+ 2~Ω. (31)

As Ω < ω � µ this quantity is negative. A similar con-
clusion is obtained for q > 2.

We have also performed a numerical experiment, evolv-
ing ψ in complex time starting from equation (25); we find
that the vortex q = 2 splits in two vortices q = +1 sym-
metrically dispatched [14]. A numerical diagonalization of
L shows that the vortex q = 2 is alternatively dynami-
cally and thermodynamically unstable when one increases
µ̃/~ω [16].

5 How to detect the presence of vortices?

Several signatures of the presence of vortices have been
proposed in the literature. A first possibility is a mea-
surement of the excitation spectrum as studied in [17].
Another idea is to measure the second order correlation
function of the atomic field [18].

A third signature of the presence of vortices is also the
holes in the density due to the vortex cores. As the size of
the vortex core in the Thomas-Fermi regime is too small to
be observed in situ by optical imaging techniques, we sug-
gest to switch off the trapping potential and let the cloud
expand; as we now check the size of the cloud and the size
of the vortex cores are magnified by the same factor in the
expansion, so that the cores become observable.

To study the expansion of the gas when the trap in
the x−y plane is switched off, the confinement along z
being kept constant, one has to solve a 2D time depen-
dent Gross-Pitaevskii equation. In this section the trap
is axi-symmetry with a time dependent frequency ω(t).
We consider the evolution in the laboratory frame, as the
detection is performed in this frame:

i~∂tψlab =
[
− ~

2

2m
∆+

1
2
mω2(t)r2 +Ng|ψlab|2

]
ψlab.

(32)

As shown in [19,20] the effect of the time dependence of
ω(t) can be absorbed by a scaling and gauge transform of
the wavefunction:

ψlab(r, t) =
1
λ(t)

eimr2λ̇/2~λψ̃(r/λ(t), t) (33)

where ω(0) is the oscillation frequency before opening the
trap; the scaling parameter solves:

λ̈ =
ω2(0)
λ3

− ω2(t)λ (34)

with initial conditions λ(0) = 1, λ̇(0) = 0; if the trap in the
x−y plane is abruptly switched off at t = 0+ the scaling
parameter is given by

λ(t) =
√

1 + ω2(0)t2. (35)

Introducing the renormalized time τ given by

dt
λ2(t)

= dτ (36)

we find that ψ̃ solves the same equation as ψlab with a
constant trap frequency equal to ω(0):

i~∂τ ψ̃ =
[
− ~

2

2m
∆+

1
2
mω2(0)r2 +Ng|ψ̃|2

]
ψ̃. (37)

As ψlab rotates in the trap at the frequency Ω in the lab
frame, so does ψ̃ in terms of the renormalized time τ . In
the limit of t→∞, τ tends to a finite value τmax, so that ψ̃
is rotated by a finite angle during the ballistic expansion:

Ωτmax = Ω

∫ ∞
0

dt
λ2(t)

=
π

2
Ω

ω(0)
· (38)

Therefore ψlab rotates with respect to its value when the
trap is switched off and its size is magnified by λ(t).

A fourth possibility, giving direct access to the phase of
the vortex, is to measure the interference fringes between
a condensate with vorticity and a reference condensate
with no vortex. We study this possibility as an application
of the scaling solution [21]. The condensate 2 has one or
several vortices and is originally centered at r = 0, the
condensate 1 has no vortex and is centered initially at
r = d. After ballistic expansion of the condensates the
resulting density can be written:

ρ1+2 = |ρ1/2
1 eim(r−d)2/2~t + ρ

1/2
2 eimr2/2~teiSeiγ(t)|2 (39)

where ρ1 and ρ2 are the densities of the condensates 1
and 2 respectively, S is the phase due to vorticity of the
condensate 2, γ(t) is a relative phase depending only on
time; to obtain the phase terms quadratic in r we have
used equation (33) with the asymptotic value λ̇/λ ' 1/t
for t → ∞. We have plotted an example of interference
fringes with two vortices in Figure 3.

The above scaling result is exact only for axi-symmetry
2D traps. For a non axi-symmetric traps and for 3D sit-
uations where the confinement along z is not strong, it
has been shown that approximate scaling solutions ex-
ist in the absence of a vortex [19,20]; in presence of vor-
tices we have integrated numerically the time dependent
Gross-Pitaevskii equation and found that the density ex-
periences an approximate scaling, the magnification of the
vortex being slightly larger than the one of the cloud (see
also [22]).
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Fig. 3. Isocontours of the total density ρ1+2 for two ballisti-
cally expanded condensates. The condensate 2 has two vortices;
it was prepared in an axi-symmetric trap with Ω = 0.2ω. The
condensate 1 has no vortex and is slightly displaced along the
axis x connecting the two vortex cores at time t.

6 Intuitive variational calculation

To get a better understanding of the numerical results we
now proceed to an intuitive ansatz for the wavefunction
with several vortices. It coincides very well with the nu-
merical results and allows an easy construction of the min-
imal energy configurations with vortices. It gives a phys-
ical understanding of the stability conditions and of the
structure of the solutions: a set of n vortices is equivalent
to a gas of interacting particles in presence of an external
potential adjusted by the rotation frequency of the trap.
We restrict to the case of an axi-symmetric trap, a good
approximation for weak (< 10%) non-axisymmetries (see
Sect. 3.2).

6.1 Ansatz for the density

To construct the ansatz we split ψ in a modulus and a
phase:

ψ(x, y) = |ψ|eiS . (40)

In the Thomas-Fermi regime, the modulus in presence of n
vortices appears as a slowly varying envelope given by the
Thomas-Fermi approximation used in the 0-vortex case:

ψslow =
[
µ−mω2r2/2

Ng

]1/2

(41)

with narrow holes digged by the vortices with charge q =
±1, represented by tanh functions of adjustable widths

and with zeros at adjustable positions:

|ψ| = ψslow

n∏
k=1

tanh[κk|r−αkR|]. (42)

The positions of the vortex cores αk are expressed in units
of the Thomas-Fermi radius R of the condensate:

R =

√
2µ
mω2

· (43)

From Section 4.2 we expect as typical values for the inverse
width of the vortex cores κk ' (mµ/~2)1/2. The chemical
potential is not an independent variable but is expressed
as a function of the other parameters from the normal-
ization condition 〈ψ|ψ〉 = 1; neglecting overlap integrals
between the holes we get

µ = µ0

[
1 + 2

n∑
k=1

(1− α2
k)

ln 2
(κkR)2

+O

(
1

(κR)4

)]
(44)

where 1/(κR)4 ∼ (~ω/µ)4 � 1 and where µ0 is the
Thomas-Fermi approximation for the condensate chemi-
cal potential without vortices:

µ0 =
(
mω2Ng

π

)1/2

· (45)

6.2 The phase

The general form of the phase of ψ in equation (40) in
presence of n vortices is:

S(x, y) =
n∑
k=1

qkθk + S0(x, y) (46)

where the integer qk = ±1 is the vortex charge (that is the
angular momentum (over ~) of the vortex k with respect to
its core axis), θk is the polar angle of a system of Cartesian
coordinates (X,Y ) centered on the vortex core and S0 is
the single-valued part of the phase. The function S0 can
in principle be determined from the modulus of ψ from
the continuity equation:

div[|ψ|2v ] = 0. (47)

The local velocity field v is related to the phase S by

v =
~
m
∇S −Ω ∧ r. (48)

This expression is derived from the relation between the
velocity operator and the momentum operator in the ro-
tating frame, v̂ = p̂/m−Ω∧ r̂. Expanding the continuity
equation we obtain

|ψ|2∆S +∇|ψ|2 ·∇S − mΩ

~
[x∂y − y∂x]|ψ|2 = 0. (49)
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This can be turned into an equation for the single-valued
part S0 of the phase; because the density |ψ|2 in a trap
vanishes at the border of the condensate S0 is uniquely
determined (up to a constant) by the resulting equation
(see Appendix); this is to be contrasted to the case of
superfluid helium in a container, where the flux, not the
density, vanishes at the border, which requires a boundary
condition on the gradient of the phase.

Equation (49) can be solved for a non-axisymmetric
trap in the absence of vortices. The solution is given by

S(x, y) = −mΩ
~

ω2
x − ω2

y

ω2
x + ω2

y

xy (50)

which leads to a change in the energy per particle

δE = −1
6
µTFΩ

2
(ω2
x − ω2

y)2

(ω2
x + ω2

y)ω2
xω

2
y

(51)

where µTF is the Thomas-Fermi approximation for the
chemical potential for Ω = 0, µTF = (mωxωyNg/π)1/2

[23]. As can be seen in Figure 2 this prediction is in good
agreement with our numerical results.

In presence of vortices the equation for S is more dif-
ficult to solve analytically. From now on we consider the
case of an axi-symmetric trap, as the energy ordering of
the vortices solutions is not affected for weak (< 10%)
non-axisymmetries (see Sect. 3.2). For a single vortex at
the center of the trap one can see that S0 = 0 solves
equation (49). From the spatial dependence of the phase
obtained numerically (Sect. 3.2) for a displaced vortex or
several vortices we have identified the following heuristic
ansatz, obtained in setting ωx = ωy = ω in equation (50):

S0(x, y) ≡ 0 (52)

that we will use in the remaining part of the section.

6.3 Further approximations for the mean energy

In the calculation of the mean energy, we make some
further approximations in the spirit of the ansatz equa-
tion (42). The reader not interested by these more techni-
cal considerations can proceed to the next subsection.

The kinetic energy involves an integral of the gradient
squared of the wavefunction:

|∇ψ|2 = |ψ|2
[
(∇ ln |ψ|)2 + (∇S)2

]
. (53)

For the gradient of the modulus of ψ we neglect the vari-
ation of the slow envelope ψslow:

∇ ln |ψ| '
n∑
k=1

κk
tanh′

tanh
[κk|r−αkR|] (er)k (54)

where (er)k = (r−αkR)/|r−αkR|. The terms in this sum
are peaked around the vortex cores; assuming a separation
between the vortex cores much larger than their width, we
neglect all the crossed terms in the square of equation (54).

Consider now the second term in equation (53). The gra-
dient squared of S involves diagonal terms (∇θk)2 and
non-diagonal terms ∇θk ·∇θk′ ; the modulus squared of ψ
involves holes with a density varying as 1−tanh2 = sech2.
In the following we keep the sech2 for the vortex k only if it
is multiplied by (∇θk)2, a quantity diverging in the center
of the core; the other terms lead to converging integrals
smaller by a factor (µ/~ω)2, which is the inverse surface
of a vortex core (

∫
d3r |ψslow|2sech2κr ∝ 1/(κR)2). This

finally leads to

Ekin '
~2

2m

∫
d2r |ψslow|2

[
n∑
k=1

tanh2[κk|r−αkR|](∇θk)2

+ κ2
k

(
tanh′[κk|r−αkR|]

)2 +
n∑
k=1

∑
k′ 6=k

qkqk′∇θk ·∇θk′
]
.

(55)

In the same spirit we simplify the contribution of −ΩLz
to the energy:

Erot = −~Ω ·
∫

d2r |ψ|2r ∧∇S (56)

' −~Ω ·
∫

d2r |ψslow|2r ∧
n∑
k=1

qk∇θk. (57)

In the potential energy

Epot =
∫

d2r |ψ|2
[

1
2
mω2r2 +

1
2
Ng|ψ|2

]
(58)

we will neglect in |ψ|4 products of sech2 coming from dif-
ferent vortex cores.

6.4 A more physical form of the mean energy

After the approximations detailed in the previous subsec-
tion the mean energy in presence of n vortices is a sum
of one-vortex self energies and binary interaction energies
between the vortices:

E =
2
3
µ0 +

n∑
k=1

W (αk, κk) +
1
2

n∑
k=1

∑
k′ 6=k

V (αk,αk′). (59)

Equation (59) allows to interpret a system with n vortices
as a gas of “particles” with binary interactions; the form
of the interaction potential obtained here is valid for a
separation between the “particles” larger than the size
1/κ of the vortex cores. The vortex self-energy is

W (α, κ) =
(~ω)2

µ0

{
1
2

+(α2−1)
[
C−lnκR− 1

2
ln(1−α2)

]}
−q~Ω

[
(1− α2)2

]
+
µ0

3

[
(4 ln 2− 1)

(1− α2)2

(κR)2

]
(60)
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Fig. 4. Self-energy of a vortex in an axisymmetric trap as function of the distance αR of the core from the trap center, for
µ0 ' 80~ω. (a) Ω = 0.03ω and (b) Ω = 0.045ω. The solid lines are given by the analytical prediction W (�). The stars are
obtained numerically. The critical frequencies defined in the text are Ωc ' 2Ωstab ' 0.06ω. Eiso is the energy of the 0-vortex
solution and the unit of energy is ~ω.

where C = 0.495 063. The lines in equation (60) corre-
spond successively to Ekin, Erot and Epot. This can be
seen as an effective potential for the vortices. One can
check that the part of W independent of Ω expels the
vortex core from the trap center, whereas the part pro-
portional to Ω provides a confinement of the vortex core
(see the following subsection).

The vortex interaction potential is given by

1
2
V (α,β) =

~2

2m
qαqβ

∫
d2r |ψslow|2∇θαR ·∇θβR. (61)

This interaction term is equivalent to the one found in
the homogeneous case and describes a repulsive interac-
tion for vortices rotating in the same direction (qαqβ > 0)
and is attractive for vortices with opposite charges [9]. An
attractive interaction will lead to the coalescence and con-
sequently annihilation of vortices with opposite charges.
Therefore we find in stationary systems always vortices
with equal charges.

As the interaction potential V (α,β) does not depend
on the parameters κ we can optimize separately the self-
energy part with respect to κ and find

(κR)2 = ξ2(1− α2)
( µ0

~ω

)2

(62)

where ξ = [(2/3)(4 ln 2− 1)]1/2 ' 1.087 07. By rewriting
the above equation as

~2κ2

m
=

1
2
ξ2

[
µ− 1

2
mω2(αR)2

]
(63)

we find that κ2 is proportional to the local chemical po-
tential at the position αR of the vortex core. We finally

get the explicit form for the self energy as

W (α) =
(~ω)2

µ0

{
1
2

+ (1− α2)

[
2 ln 2 + 1

3

+ ln
νµ0

~ω
+ ln(1− α2)− qΩµ0

~ω2
(1− α2)

]}
(64)

where ν = 0.493 12.

6.5 Case of a single vortex: critical frequencies

In Figure 4 we have plotted the self-energy of a vortex
as a function of the displacement of the core from the
trap center, for different values of the rotation frequency
Ω. The analytical prediction coincides very well with the
numerical value [24].

For Ω = 0 the position of the vortex at the trap center
gives an energy maximum. For Ω > 0 the rotation of the
trap provides an effective confinement of the vortex core at
the center of the trap for positive charges q (see the term
proportional to Ω in Eq. (64)); from now one we therefore
take all the charges qk to be equal to +1. For a large
enough Ω we reach a situation where a vortex at the trap
center corresponds to a local energy minimum, by further
increasing Ω the vortex state at the trap center becomes
a global minimum with energy less than the condensate
without vortex.

The above suggests that we have to distinguish two
critical rotation frequencies: the first one defines the fre-
quencyΩstab above which the vortex is a local minimum of
energy. Above the frequency Ωc the single vortex solution
has an energy lower than the condensate without vortex.
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Fig. 5. Interaction energy between a vortex at the center of
the trap and a vortex at a distance αR from the center, as
given by the analytical formula equation (67) for V . The trap
is axisymmetric; the unit of energy is (~ω)2/µ0.

We calculate Ωstab from the condition d2W/dα2 = 0 at
α = 0 and Ωc from the condition W = 0 at α = 0:

Ωc =
~ω2

µ0
ln
[
C′µ0

~ω

]
(65)

Ωstab =
~ω2

2µ0
ln
[
C′e1/2µ0

~ω

]
(66)

where C′ = e(2 ln 2+1)/3+1/2ν ' 1.8011. As we are in the
regime µ0 � ~ω, Ωc is approximately twice Ωstab [25].
Our prediction for Ωc scales as (logµ0)/µ0 as in [15].

6.6 Case of several vortices

By integrating equation (61) we get an explicit form for
the vortex interaction potential for vortices with equal
charges:

V (α,β) =
(~ω)2

µ0

{
α2+β2−1−|α∧ β|arctan

[
|α ∧ β|

(1−α·β)

]
+

1
2

(1−α · β) log
[

1− 2α · β + α2β2

|α− β|4
]}
· (67)

At short distances between the two vortex cores the loga-
rithmic term in the above expression dominates, leading to
a repulsive potential ∼ −2(1−α·β) log |α−β|(~ω)2/µ0. In
Figure 5 we plot the interaction energy between a vortex at
the center of the trap and one of equal charge displaced by
αR; the interaction is purely repulsive. A conclusion which
essentially holds as well for arbitrary vortex positions. In
Figure 6 we show the total (interaction + self-energy) for
two vortices symmetrically displaced from the trap center,
as function of the displacement; the analytical prediction
coincides again very well with the numerical results [24].
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Fig. 6. Energy of a system of two vortices symmetrically
displaced by ±αR from the trap center, as function of the
displacement α, for Ω = 0.1ω and µ0 ' 80~ω. Solid line: ana-
lytical result. Stars: numerics. The trap is axisymmetric; Eiso

is the energy of the 0-vortex solution and the unit of energy
is ~ω.

To obtain the equilibrium distance between the two vortex
cores one minimizes the total energy over α in Figure 6.

To get the minimal energy configurations as function
of the rotation frequency of the trap, we minimize our an-
alytical prediction for the energy over the positions of the
n = 1, 2, . . . vortex cores. The result is shown in Figure 7.
Each curve corresponds to a fixed value of n; it starts at
Ω = Ωstab(n) (for Ω < Ωstab(n) there is no local minima
of energy with n vortices); it becomes the global energy
minimum for Ω = Ωc(n). We have plotted these two crit-
ical frequencies as function of n in Figure 8.

We have also given numerical results (circles) in
Figure 7. Even if there is good agreement between an-
alytical and numerical results, we still need a numerical
calculation to check the stability of the solutions; our sim-
ple analytical ansatz is indeed not sufficient to predict the
destabilization of a given vortex configuration at high Ω,
a phenomenon studied with a numerical calculation of the
Bogoliubov spectrum for a single vortex in [26].

For a fixed value of the number of vortices n there
may exist local minima of energy, in addition to the global
minimum plotted in Figure 7, a situation known from su-
perfluid helium [4]. E.g. for n = 6 (see Fig. 9) the global
minimum of energy is given by a configuration with six
vortex cores on a circle; there exists also a local mini-
mum of energy with one vortex core at the center of the
trap and five vortex cores on a circle. The energy differ-
ence per particle between the two configurations is very
small, δE ' 0.002~ω for the parameters of the figure and
probably beyond the accuracy of our variational ansatz.
For relatively large rotation frequencies Ω one can find
local minima of energy configurations with many vortices
(see [4] for superfluid helium); we plot two configurations
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obtained from the analytical ansatz as function of the number
of vortices. The chemical potential µ0 is approximately 40~ω
and the unit for Ω is the trap frequency ω.

with 18 vortices in Figure 10, with an energy difference
δE = 0.0034~ω.

In estimating the physical relevance of these energy
differences one should keep in mind that NδE matters,
rather than δE, where N is the number of particles in
the condensate: e.g. at a finite temperature T the ground
energy configuration is statistically favored as compared
to the metastable one when NδE � kBT .

7 Vortices in a 3D configuration

We have extended the numerical calculation to the case of
a 3D cigar-shaped trap, that is with a confinement weaker
along the rotation axis than in the x−y plane. Even in this
case rotation of the trap can stabilize the vortex. We show
in Figure 11 density cuts of a solution with 5 vortices; the
vortex cores are almost straight lines in the considered
Thomas-Fermi regime, except at vicinity of the borders
of the condensate. As in Section 6 the core diameter is
determined by the local chemical potential in the gas.

This suggests that our 2D ansatz (Sect. 6) can be
generalized to 3D situations, with αk and κk depending
on z.

8 Conclusion and perspectives

We have presented in this paper an efficient numerical
algorithm and a heuristic variational ansatz to determine
the local minima energy configurations for a Bose-Einstein
condensate strongly confined along z and subject to a ro-
tating harmonic trap in the x−y plane.

Our results can be used as a first step towards finite
temperature calculations. Interesting problems are e.g. the
critical temperature for the vortex formation and the Mag-
nus forces induced by the non-condensed particles on the
vortex core [27].
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hospitality and the NSF for support under grant No. PHY94-
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Appendix A: Uniqueness of the phase
from the continuity equation in a trap

Consider two solutions S1 and S2 of the continuity equa-
tion:

div[|ψ|2∇S] =
mΩ

~
(x∂y − y∂x)|ψ|2. (A.1)

S1 and S2 correspond to the same positions of the vor-
tex cores, so that their difference S12 is a single-valued
function of the position, solving

div[|ψ|2∇S12] = 0. (A.2)

To show that in the case of a trapped condensate S12 is a
constant we consider the following integral

I =
∫ ∫
A

div[|ψ|2S12∇S12] (A.3)

where the integration runs over the area A of the conden-
sate.
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Fig. 9. In an axi-symmetric trap with Ω = 0.3ω and µ0 ' 40~ω, different configurations of 6 vortices corresponding to a local
minimum of energy: (a) 6 vortices on a circle, with an energy per particle E = Eiso − 0.5910~ω; (b) one vortex at the center
and 5 vortices on a circle, with E = Eiso− 0.5890~ω. Eiso is the energy per particle in the absence of vortex. The unit of length
is (~/mω)1/2.
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Fig. 10. In an axi-symmetric trap with Ω = 0.5ω and µ ' 40~ω, different configurations of 18 vortices corresponding to a local
minimum of energy: (a) with one vortex at the center E = Eiso − 2.3988~ω, this is the global minimum of energy; (b) without
vortex core at the center; the energy per particle is slightly higher, E = Eiso − 2.3954~ω. Eiso is the energy per particle in the
absence of vortex. The unit of length is (~/mω)1/2.
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Fig. 11. A local minimum energy solution in 3D with 5 vortices obtained from the numerical evolution in complex time. The
trapping frequencies are in the ratio ωx = ωy = 4ωz. The chemical potential is 53.7~ωx,y. The trap is rotated at a frequency
Ω = 0.25ωx,y. (a) Isocontours for a cut of the density in the plane z = 0, showing the 5 vortex cores. (b) Isocontours for a cut
of the density in the x−z plane, showing the dependence with z of the vortex cores. The unit of length is (~/mωx,y)

1/2.

First, we transform I using Gauss’s formula into an
integral over the border Ā of the condensate:

I =
∫
Ā
|ψ|2S12∇S12 · n = 0 (A.4)

which vanishes as |ψ|2 = 0 on the border of the conden-
sate.

Second, we expand the integrand of I as

div[|ψ|2S12∇S12] = S12div[|ψ|2∇S12] + |ψ|2(∇S12)2.
(A.5)

The first term in the right hand side vanishes in virtue of
the continuity equation. Therefore

0 = I =
∫ ∫
A
|ψ|2(∇S12)2. (A.6)

As the integrand is positive this implies ∇S12 = 0, that
is S12 = constant.
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